Recognition of Sentiment Sequences in Online Discussions
نویسندگان
چکیده
Currently 19%-28% of Internet users participate in online health discussions. In this work, we study sentiments expressed on online medical forums. As well as considering the predominant sentiments expressed in individual posts, we analyze sequences of sentiments in online discussions. Individual posts are classified into one of the five categories encouragement, gratitude, confusion, facts, and endorsement. 1438 messages from 130 threads were annotated manually by two annotators with a strong inter-annotator agreement (Fleiss kappa = 0.737 and 0.763 for posts in sequence and separate posts respectively). The annotated posts were used to analyse sentiments in consecutive posts. In automated sentiment classification, we applied HealthAffect, a domain-specific lexicon of affective words.
منابع مشابه
Back up your Stance: Recognizing Arguments in Online Discussions
In online discussions, users often back up their stance with arguments. Their arguments are often vague, implicit, and poorly worded, yet they provide valuable insights into reasons underpinning users’ opinions. In this paper, we make a first step towards argument-based opinion mining from online discussions and introduce a new task of argument recognition. We match usercreated comments to a se...
متن کاملSentiment classification of online political discussions: a comparison of a word-based and dependency-based method
Online political discussions have received a lot of attention over the past years. In this paper we compare two sentiment lexicon approaches to classify the sentiment of sentences from political discussions. The first approach is based on applying the number of words between the target and the sentiment words to weight the sentence sentiment score. The second approach is based on using the shor...
متن کاملA Supervised Method for Constructing Sentiment Lexicon in Persian Language
Due to the increasing growth of digital content on the internet and social media, sentiment analysis problem is one of the emerging fields. This problem deals with information extraction and knowledge discovery from textual data using natural language processing has attracted the attention of many researchers. Construction of sentiment lexicon as a valuable language resource is a one of the imp...
متن کاملText Analytics of Customers on Twitter: Brand Sentiments in Customer Support
Brand community interactions and online customer support have become major platforms of brand sentiment strengthening and loyalty creation. Rapid brand responses to each customer request though inbound tweets in twitter and taking proper actions to cover the needs of customers are the key elements of positive brand sentiment creation and product or service initiative management in the realm of ...
متن کاملImproving Agreement and Disagreement Identification in Online Discussions with A Socially-Tuned Sentiment Lexicon
We study the problem of agreement and disagreement detection in online discussions. An isotonic Conditional Random Fields (isotonic CRF) based sequential model is proposed to make predictions on sentenceor segment-level. We automatically construct a socially-tuned lexicon that is bootstrapped from existing general-purpose sentiment lexicons to further improve the performance. We evaluate our ag...
متن کامل